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Genome-wide	association	analyses	identify	143	risk	variants	and	
putative	regulatory	mechanisms	for	type	2	diabetes	

	
Xue	et	al.	 	
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Supplementary	Note	1	Imputing	the	stage	1	data	of	DIAGRAM	to	1KGP	using	ImpG	

Since	individual-level	genotypes	are	not	available	in	DIAGRAM,	we	imputed	the	stage	1	summary	

statistics	of	DIAGRAM	to	1KGP	using	ImpG1.	Before	imputation,	we	removed	SNPs	on	less	than	

9,000	cases	or	50,000	controls.	The	haplotype	reference	panel	files	(EUR)	and	SNP	mapping	files	

were	obtained	from	1KGP	phase	1	(release	v3).	We	chose	phase	1	because	the	ImpG-sum	software	

does	not	take	INDELs	(insertions	and	deletions)	into	account.	After	removing	SNPs	with	MAF	<	

0.01	 or	 imputation	 accuracy	 metric1	 !
"#$%

&
< 0.8 ,	 6,233,351	 SNPs	 were	 retained	 for	 further	

analysis.		

	

Supplementary	Note	2	Heterogeneity	and	sample	overlap	among	data	sets		

Before	meta-analysis,	we	 applied	 the	 LD	 score	 regression	 approach2,3	 to	 estimate	 the	 genetic	

correlation	and	sample	overlap	between	pairwise	data	sets,	and	to	assess	the	inflation	in	test-

statistics	in	each	data	set.	The	estimates	of	genetic	correlation	between	pairwise	data	sets	were	

all	not	significantly	different	from	1	(Supplementary	Table	1),	suggesting	the	lack	of	evidence	

for	 genetic	 heterogeneity.	 The	 estimates	 of	 bivariate	 LD	 score	 regression	 intercept	 between	

pairwise	data	sets	were	all	close	to	zero,	suggesting	the	lack	of	evidence	for	sample	overlap.	We	

also	used	a	metric	called	lmeta4	to	test	for	sample	overlap	between	pairwise	data	sets	(lmeta	>	1	if	

there	is	sample	overlap	between	two	data	sets).	lmeta	was	1.0	between	DIAGRAM	and	GERA,	1.0	

between	 DIAGRAM	 and	 UKB,	 and	 0.99	 between	 GERA	 and	 UKB,	 again	 suggesting	 the	 lack	 of	

evidence	for	sample	overlap	among	the	three	data	sets.	

	

The	 estimate	 of	 intercept	 of	 the	 univariate	 LD	 score	 regression	 was	 1.009	 (s.e.	 =	 0.008)	 in	

DIAGRAM,	1.031	(s.e.	=	0.009)	in	GERA,	and	1.057	(s.e.	=	0.013)	in	UKB,	suggesting	that	population	

stratification	has	been	well	 controlled	although	 the	 small	 inflation	 in	GREA	and	UKB	 is	worth	

further	investigation.	We	performed	a	BOLT-LMM5	analysis	in	GERA	and	re-ran	the	univariate	LD	

score	regression	using	the	GWAS	summary	statistics	from	BOLT-LMM.	The	intercept	was	1.026	

(s.e.	=	0.008),	similar	to	the	estimate	above	and	still	significantly	larger	than	1,	suggesting	that	the	

small	inflation	in	the	LD	score	regression	intercept	in	GERA	is	unlikely	to	be	due	to	population	

structure.	Note	that	a	small	inflation	in	LDSC	intercept	is	often	observed	in	data	with	large	sample	

sizes6.	Nevertheless,	 the	 remaining	 inflation	 in	 LDSC	 intercept	 from	 the	BOLT-LMM	summary	

data	might	be	due	 to	 inflated	 test-statistics	 from	a	mixed	 linear	model	analysis	of	unbalanced	

case-control	ratio7.	

	

Supplementary	Note	3	Functional	relevance	of	the	novel	gene	loci	to	T2D	

The	functional	relevance	of	some	novel	gene	loci	to	T2D	are	supported	by	existing	biological	or	

molecular	 evidence	 related	 to	 insulin	 and	 glucose.	 For	 example,	MBNL1	 was	 up-regulated	 by	
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insulin	 stimulation8	 and	 controlled	 insulin	 receptor	 (INSR)	 exon	 inclusion	 by	 binding	 to	 a	

downstream	 enhancer9.	 A	 missense	 mutation	 in	 STAT3	 was	 reported	 to	 result	 in	 neonatal	

diabetes	by	reducing	insulin	synthesis10	or	premature	induction	of	pancreatic	differentiation11.	A	

neighbouring	gene	of	STAT3	(~14kb	distance),	PTRF,	was	reported	to	be	associated	with	glucose	

tolerance	 status12	 and	 mediate	 insulin-regulated	 gene	 expression13.	 Activation	 of	 CAMK2G	

suppressed	hepatic	insulin	signalling	(insulin	resistance)14	and	FOXA2	could	improve	the	hepatic	

insulin	resistance	in	diabetic/insulin-resistant	mice	models15.	

	

Supplementary	Note	4	GCTA-fastBAT	analysis	

Because	 the	effect	size	of	an	 individual	SNP	 is	often	very	small,	 it	would	be	more	powerful	 to	

detect	 the	 aggregated	 effect	 of	 a	 set	 of	 SNPs	 at	 the	 locus	 that	 harbours	 multiple	 associated	

variants.	fastBAT16	is	a	set-based	association	test	approach	using	summary	data	from	GWAS	to	

test	the	aggregated	effect	of	a	set	of	SNPs	within	a	gene16.	We	applied	fastBAT	to	run	a	gene-based	

test	using	the	summary-level	data	from	the	meta-analysis	with	LD	between	SNPs	estimated	from	

the	1KGP-imputed	GERA	data.	We	clustered	the	SNPs	into	24,765	genes	by	physical	distance	and	

tested	each	gene	for	association	at	a	genome-wide	significance	level	(P	<	0.05/24,765	=	2.02	×	10-

6).	Here,	we	define	a	novel	gene	discovery	as	a	gene	that	passed	genome-wide	significance	level	

(PfastBAT	<	2.02	×	10−6)	 in	 the	gene-based	analysis	but	 there	 is	no	genome-wide	significant	SNP	

(PGWAS	>	5	×	10−8)	within	±	0.5	Mb	of	the	gene.		

	

We	 identified	 374	 genes	 (12	 novel	 genes	 in	 addition	 to	 the	 single-SNP	 based	meta-analysis)	

(Supplementary	Data	2)	for	T2D	at	P	<	2.0	×	10-6.	The	gain	of	power	in	the	gene-based	test	can	

be	due	to	the	reduced	multiple-testing	burden	or	multiple	independently	associated	variants	at	a	

locus.	We	therefore	performed	a	conditional	analysis	at	each	of	the	12	loci,	and	found	that	there	

were	multiple	independent	signals	with	P	<	5	×	10-5	at	4	of	these	loci	(NDUFS3,	HIVEP2,	ITGA1,	

FAM110D)	(Supplementary	Fig.	5).		

	

Supplementary	Note	5	GCTA-COJO	analysis	

Conditional	and	joint	analysis17	(COJO)	aims	to	identify	multiple	signals	in	a	locus,	conditioning	

on	 the	 primary	 associated	 SNP.	 In	 COJO	 analysis,	 we	 performed	 a	 stepwise	 model	 selection	

procedure	to	select	near-independent	SNPs.	We	set	the	threshold	P-value	to	5	×	10-8,	and	window	

size	 of	 10Mb,	 assuming	 that	 SNPs	 more	 than	 10Mb	 away	 from	 each	 other	 or	 on	 different	

chromosomes	are	in	linkage	equilibrium.	We	used	1KGP-imputed	GERA	dataset	as	the	reference	

for	 LD	 estimation.	 We	 identified	 139	 SNPs	 at	 the	 genome-wide	 significance	 threshold	

(Supplementary	Data	3).	There	were	seven	loci	with	multiple	independent	signals	associated	

with	T2D	(Supplementary	Data	3).	The	joint	effects	of	the	SNPs	at	the	seven	loci	estimated	from	
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GCTA-COJO	 using	 summary-level	 data	 were	 consistent	 with	 those	 from	 multiple	 regression	

analysis	of	individual-level	data	from	UKB	(Supplementary	Data	4).		

	

Supplementary	Note	6	Polygenic	risk	score	(PRS)	analysis		

We	 used	 DIAGRAM	 and	 UKB	 as	 the	 discovery	 set	 and	 GERA	 as	 a	 validation	 set	 in	 the	 PRS	

analysis18.	 To	 avoid	 sample-overlap	 between	 the	 discovery	 and	 validation	 sets,	we	 re-ran	 the	

meta-analysis	excluding	the	GERA	cohort	and	identified	109	near-independent	common	SNPs	at	

P	<	5×10-8	by	clumping	(LD	r2	threshold	=	0.01	and	window	size	=	1	Mb).	These	SNPs	were	then	

used	to	derive	prediction	equations	for	individuals	in	GERA.	We	divided	GERA	into	ten	subsets	

(each	with	sample	size	~6,000	and	similar	sample	prevalence)	to	acquire	the	sampling	variance	

of	the	estimated	classification	accuracy.	On	average,	the	classification	accuracy	(measured	by	the	

area	under	the	curve	or	AUC19)	was	0.579	(s.e.	=	0.003),	lower	than	the	classification	accuracy	of	

0.599	 (s.e.	 =	 0.002)	 obtained	 using	 all	 SNP	 effects	 (~5.1	million	 SNPs)	 estimated	 from	GCTA-

SBLUP	(Summary-data-based	Best	Linear	Unbiased	Prediction)20	(Supplementary	Table	2).	We	

further	quantified	the	proportion	of	variance	in	liability	to	T2D	in	GERA	explained	by	a	polygenic	

predictor	computed	from	the	109	genome-wide	significant	SNPs	discovered	in	the	meta-analysis	

of	DIAGRAM	and	UKB.	The	polygenic	predictor	explained	2.1%	of	the	variance	in	liability	to	T2D,	

about	a	third	of	the	estimate	of	ℎ
,-.

& 	on	the	liability	scale	(note	that	the	ℎ
,-.

& 	in	GERA	was	much	

lower	than	that	in	UKB).	

	

Supplementary	 Note	 7	 Enrichment	 of	 genetic	 variation	 in	 functional	 regions	 and	

tissue/cell	types	

Recent	 studies	 have	 indicated	 that	 different	 functional	 regions	 of	 the	 genome	 contribute	

disproportionately	to	total	heritability21.	We	applied	a	stratified	LD	score	regression	method21	to	

dissect	the	contributions	of	the	functional	elements	to	the	SNP-based	heritability	(ℎ
,-.

& )	for	T2D.	

There	were	significant	enrichments	 in	some	functional	categories	(Supplementary	Fig.	6	and	

Supplementary	 Data	 5).	 First,	 the	 conserved	 regions	 in	 mammals22	 showed	 the	 largest	

enrichment,	with	2.6%	of	SNPs	explaining	24.8%	of	ℎ
,-.

& 	(fold-change	=	9.5;	P	=	1.9×10-4).	This	

supports	 the	 biological	 importance	 of	 conserved	 regions,	 although	 the	 functions	 of	 many	

conserved	regions	are	still	undefined.	Second,	the	histone	marker	H3K9ac23	was	highly	enriched,	

with	 12.6%	 of	 SNPs	 explaining	 59.7%	 of	ℎ
,-.

& 	(fold-change	 =	 4.7;	 P	 =	 2.5×10-5).	 H3K9ac	 can	

activate	genes	by	acetylation	and	is	highly	associated	with	active	promoters.	We	also	partitioned	

ℎ
,-.

& 	into	ten	cell	 type	groups	(Supplementary	Table	3);	 the	top	cell	 type	group	for	T2D	was	

“adrenal	 or	 pancreas”	 (fold-change	 =	 6.0;	P	 =	 8.1×10-9),	 and	 the	 result	was	 highly	 significant	

(PBonferroni	=	1.8×10-6)	after	Bonferroni	correction	for	220	tests	(Supplementary	Fig.	7).		
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We	further	used	MAGMA24	to	test	the	enriched	gene	sets.	In	total,	305	gene	sets	in	GO_BP	terms	

and	20	gene	sets	in	KEGG	pathways	were	significantly	enriched	(Supplementary	Data	6).	The	

top	pathway	enrichment	was	“glucose	homeostasis”	(P	=	6.0×10-8)	in	GO_BP,	and	“maturity	onset	

diabetes	of	the	young”	(P	=	3.2×10-7)	in	KEGG.	To	further	investigate	the	molecular	connections	

of	 T2D-associated	 genes,	 a	 protein-protein	 interaction	 network	was	 analyzed	 using	 STRING25	

(Supplementary	 Fig.	 8).	 Among	 the	 functional	 enrichment	 (Supplementary	Data	 7)	 in	 this	

network,	there	are	four	genes	(HHEX,	HNF1A,	HNF1B,	and	FOXA2)	involved	in	the	KEGG	pathway	

of	“maturity	onset	diabetes	of	the	young”,	and	four	genes	(ADCY5,	CAMK2G,	KCNJ11,	and	KCNU1)	

were	enriched	in	“insulin	secretion”.	

	

Supplementary	 Note	 8	 Enrichment	 of	 the	 T2D-associated	 DNA	 methylation	 sites	 in	

functional	categories		

We	obtained	chromatin	status	data	of	127	epigenomes	from	the	Roadmap	Epigenomics	Mapping	

Consortium26.	 We	 mapped	 235	 T2D-associated	 DNA	 methylation	 (DNAm)	 sites	 to	 the	 14	

functional	categories	defined	in	Wu	et	al.27	and	counted	the	number	of	DNAm	sites	mapped	to	

each	category.	We	then	randomly	sampled	from	all	the	DNAm	probes	the	same	number	of	null	

probes	with	 variance	 in	DNAm	 levels	 at	 each	 probe	matched	 and	 repeated	 the	 sampling	 500	

times.	The	fold	enrichment	value	was	calculated	as	a	ratio	of	the	observed	value	to	that	of	a	null	

probe	set	averaged	across	500	replicates.	The	standard	error	of	estimate	of	fold	enrichment	was	

calculated	from	500	replicates	(Supplementary	Fig.	9).		

	

Supplementary	Note	9	SMR	power	calculation	

To	illustrate	the	power	of	the	SMR	test	as	a	function	of	the	sample	size	of	eQTL	study,	we	

performed	simulations	under	a	pleiotropy	model	(i.e.	mimicking	a	shared	causal	variant	

between	the	expression	level	of	a	gene	and	the	disease).	Following	Zhu	et	al.28,	we	simulated	the	

causal	SNP	from	a	binomial	distribution	/~12345267(2, ;)	with	f	being	the	minor	allele	

frequency	(MAF),	f	~	Uniform(0.01,	0.5).	Gene	expression	level	(=)	was	simulated	based	on	the	

model	= = /?@A + C@A,	where	C@A~D 0, E6! /?@A (1 G@A
&
− 1) 	with	G@A& 	being	the	proportion	of	

variance	in	x	explained	by	the	causal	SNP.	We	randomly	sampled	G@A& 	from	the	observed	

proportions	of	variance	in	gene	expression	levels	explained	by	the	corresponding	top	cis-eQTLs	

with	IJKLM < 5×10
PQ	for	the	27	significant	genes	in	the	eQTLGen	data.	The	trait	phenotype	(y)	

was	simulated	based	on	the	model		R = /?@S + C@S,	where		C@S~D 0, E6! /?@S (1 G@S
&
− 1) 	

with	G@S& 	being	the	proportion	of	variance	in	y	explained	by	the	causal	SNP.	We	randomly	

sampled	G@S& 	from	the	observed	proportion	of	variance	in	T2D	risk	explained	by	the	top	

associated	SNPs	(on	the	liability	scale)	at	the	genome-wide	significant	loci	(i.e.	ITUV, <
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5×10
PQ)	identified	in	our	T2D	meta-analysis.	The	variance	explained	in	the	meta-analysis	data	

was	computed	using	an	approximate	approach	assuming	that	the	effect	size	of	an	individual	

SNP	is	small18,	i.e.	G& 	= 	2;(1 − ;) XG − 1
&
/2
&,	where	2 = E/Z	with	K	being	the	disease	

prevalence	and	v	the	height	of	the	normal	curve	at	the	truncation	point	pertaining	to	K.	We	set	

3TUV, = 659,316	to	be	consistent	with	the	sample	size	of	our	T2D	meta-analysis	and	varied	the	

sample	size	of	eQTL	study	(3JKLM)	from	200	to	2000.	We	dichotomized	y	to	a	0-1	trait	assuming	

a	disease	prevalence	of	10%.	This	simulation	was	repeated	5000	times.			

	

The	overall	power	to	detect	the	simulated	pleiotropic	association	between	gene	and	trait	depends	

on	the	power	of	detecting	the	eQTL	effect	(because	the	SMR	test	is	performed	only	for	genes	with	

IJKLM < 5×10
PQ)	and	the	power	of	the	SMR	test	(the	SMR	test-statistic	is	a	monotonic	function	

of	3JKLM)28.	The	simulation	result	showed	that	SMR	power	for	either	discovery	or	replication	was	

high	 even	 using	 eQTL	 data	with	 relatively	 small	 sample	 size	 (e.g.	 GTEx	 data),	 but	 the	 overall	

power	was	restricted	by	the	power	of	eQTL	detection	(Supplementary	Fig.	10).	In	practice,	the	

power	is	likely	to	be	slightly	lower	than	that	quantified	by	this	simulation	because	we	used	the	

estimated	variance	explained,	which	are	biased	upwards	due	to	the	winner’s	curse,	as	the	true	

parameters	for	simulation.	

	

Supplementary	Note	10	Potential	adverse	effects	and	additional	drug	targets	for	SMR	hits	

To	 explore	whether	 any	 of	 these	 three	 genes	 have	 potential	 adverse	 effects,	 we	 checked	 the	

associations	of	the	lead	variants	at	the	three	loci	with	other	traits	from	previous	studies,	including	

two	insulin-related	GWAS	(insulin	sensitivity29	and	insulin	secretion30)	and	four	lipid	traits	(HDL	

cholesterol,	LDL	cholesterol,	triglycerides	and	total	cholesterol)31	(Supplementary	Data	14).	We	

did	not	observe	any	significant	association	with	insulin	traits	after	correcting	for	multiple	testing	

(i.e. , 0.05	/	(3×^) ,	 where	 t	 is	 the	 number	 of	 traits).	 However,	 the	 risk	 allele	 of	 the	 lead	 T2D-

associated	 variant	 at	 the	 LTA	 locus	 was	 associated	 with	 increased	 LDL	 cholesterol,	 total	

cholesterol	and	triglycerides.	The	risk	allele	of	the	lead	T2D-associated	variant	at	the	ARG1	locus	

was	associated	with	decreased	HDL	cholesterol	and	total	cholesterol.		

In	 addition	 to	 the	 three	 genes	 that	 are	 currently	 targeted	 by	 approved	 drugs,	 we	 found	 two	

additional	genes	that	are	targeted	by	an	approved	veterinary	drug	and	a	nutraceutical	drug	(See	

URLs	 for	detailed	definition),	respectively.	PLEKHA1	 (UniProt	 ID:	Q9HB21),	whose	expression	

level	was	negatively	associated	with	T2D	risk,	is	targeted	by	citric	acid	(DrugBank	ID:	DB04272).	

Intraperitoneal	 injection	 of	 citrate	 in	 diabetic	 mice	 reduced	 apoptotic	 and	 inflammatory	

responses	and	protected	cardiac	abnormalities	induced	by	diabetes32.	A	reduction	of	citric	acid	

cycle	 (CAC)	 flux	 which	 reflects	 mitochondrial	 dysfunction	 was	 observed	 in	 T2D	 patients33.	
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EHHADH	(UniProt	ID:	Q08426),	whose	expression	level	was	negatively	associated	with	T2D	risk,	

is	targeted	by	a	nutraceutical	drug	NADH	(DrugBank	ID:	DB00157).		

	

Supplementary	Note	11	Sex	or	age	heterogeneity	analysis	

We	performed	 a	 GWAS	 analysis	within	 each	 sex	 (male	 or	 female)	 or	 age	 (two	 age	 categories	

separated	at	median	year	of	birth)	group	in	the	UKB	data.	In	the	sex	heterogeneity	analysis,	there	

were	 208,419	males	 and	 247,188	 females.	 In	 age	 heterogeneity	 analysis,	 there	were	 218,261	

individuals	in	the	first	age	group	(born	from	1951	to	1971)	and	237,346	individuals	in	the	second	

age	group	(born	from	1930	to	1950).	We	then	tested	the	difference	in	the	estimated	SNP	effects	

between	 the	 two	sex	 (or	age)	groups	by	a	heterogeneity	 test,	 i.e.	_% = ?` − ?&

&

	/	(ab
`

&
	+ 	ab

&

&
),	

which	follows	a	c&	distribution	with	d;	 = 	1	under	the	null	hypothesis	of	no	difference.	

There	 was	 no	 evidence	 for	 sex	 heterogeneity	 (Supplementary	 Fig.	 14),	 consistent	 with	 the	

observation	 that	 the	 male-female	 genetic	 correlation	 estimated	 by	 bivariate	 LDSC3	 was	 not	

significantly	different	from	1	(!e = 	0.94,	g. C. = 0.042,	and	IhijjJkJlmJ = 0.17).	There	was	only	one	

genome-wide	significant	 signal	 (rs72805579	at	 the	TMEM17	 locus	with	Pheterogeneity	=	2.1×10-9)	

with	age	heterogeneity	(Supplementary	Fig.	14).	The	estimates	of	SNP	effects	were	of	opposite	

directions	 in	 the	 two	age	groups,	but	 the	effect	was	not	genome-wide	significant	 in	either	age	

group	(Supplementary	Table	8).	

	

Supplementary	Note	12	Biases	in	SNP-T2D	associations	due	to	misdiagnosed	T1D	or	LADA	

cases	

Most	data	used	in	this	study	were	from	DIAGRAM	and	UKB.	The	summary	statistics	of	DIAGRAM	

were	from	a	meta-analysis	of	12	GWAS	cohorts.	Previous	studies	show	that	the	biases	in	SNP-T2D	

associations	due	to	misdiagnosis	are	likely	to	be	very	modest34-36.	Those	studies	claimed	that	their	

GWAS	results	for	T2D	were	not	confounded	by	T1D	associations	because	of	the	absence	of	most	

known	T1D-associated	loci	in	their	T2D	discovery.	Following	the	approach	of	Mahajan	et	al.35,	we	

extracted	 48	 T1D-associated	 SNPs	 from	Bradfield	 et	 al.37,	 and	 found	 that	 only	 four	 (16q23.1,	

GLIS3,	6q22.32	and	PTPN22)	of	them	showed	associations	with	T2D	at	a	suggestive	significance	

level	(i.e.	P	<	1×10-5)	with	two	of	them	(GLIS3	and	6q22.32)	passing	the	genome-wide	significance	

level	(i.e.	P	<	5×10-8)	(Supplementary	Data	15).		

	

Furthermore,	following	Scott	et	al.36,	we	computed	the	polygenic	risk	score	(PRS)	for	T1D	in	UKB	

using	the	48	T1D-associated	SNPs	and	tested	for	its	association	with	the	T2D	phenotype.	The	PRS	

computed	from	the	44	T1D-only	SNPs	did	not	show	significant	association	with	T2D	(OR=1.02	

and	P	=	0.93),	unless	the	four	risk	loci	that	showed	suggestive	associations	with	T2D	discovery	

were	included	in	the	computation	of	PRS	(Odds	ratio	(OR)	=1.99	and	P	=	5.86×10-13).	These	results	
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suggest	 that	our	 samples	were	unlikely	 to	 include	a	 substantial	number	of	misdiagnosed	T1D	

cases,	and	that	the	associations	of	the	four	T1D	loci	with	T2D	were	likely	because	of	pleiotropy.	

We	further	performed	the	T2D	GWAS	by	logistic	regression	using	individual-level	data	with	and	

without	fitting	the	T1D	phenotype	as	covariate	in	unrelated	UKB	individuals	(n	=	347,997).	The	

correlation	 coefficient	 of	 z-statistics	 of	 the	 139	 significant	 loci	 between	 the	 conditional	 and	

unconditional	 models	 was	 almost	 one	 (Pearson	 correlation	 r	 =	 0.995).	 In	 the	 unconditional	

model,	43	out	of	139	loci	remained	genome-wide	significant	at	P	<	5	×10-8	in	this	subset.	Among	

these	43	loci,	34	were	still	significant	after	conditional	on	T1D	phenotype.	For	those	loci	that	were	

not	 significant	 conditioning	 on	 the	 T1D	 phenotype,	 the	 differences	 in	 P-value	 were	 mostly	

marginal	except	for	two	SNPs	in	MHC	region:	rs1063355	located	in	HLA-DQB1,	Punconditional	=	1.1	

×10-15,	Pconditional	=	1.3	×10-4;	rs2071479	located	in	HLA-DOB,	Punconditional	=	5.2	×10-7,	Pconditional	=	5.8	

×10-1,	indicating	that	most	T2D	loci	detected	in	this	study	were	independent	of	T1D.		

	

We	could	not	find	any	publicly	available	data	for	LADA	to	perform	the	analyses	above.	However,	

a	 recent	 study38	 commented	 that	 “type	 1	 diabetes	 genetic	 risk	 score	 provides	 a	 reasonable	

approximation	 for	 all	 autoimmune	 diabetes”.	 Under	 this	 hypothesis,	 our	 conclusion	 on	 T1D	

misdiagnosis	 is	 expected	 to	 hold	 for	 LADA.	 In	 addition,	 previous	 studies	 identified	 three	T2D	

associations	due	 to	misdiagnosed	LADA	 cases,	 i.e.,	HLA-DQB139,40,	 INS39	and	PTPN2239.	 Two	of	

them	(INS	and	PTPN22)	were	not	genome-wide	significant	and	HLA-DQB1	was	not	a	novel	locus	

in	our	analysis.	

	

In	conclusion,	the	novel	loci	identified	in	this	study	were	very	unlikely	due	to	misdiagnosed	T1D	

or	LADA	cases.		
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Supplementary	Table	1	Results	from	bivariate	LD	score	regression	analysis	(with	standard	errors)	in	three	cohorts		
Sample	1	 Sample	2	 Genetic	correlation	 Intercept	
DIAGRAM	 GERA	 1.0659	(0.1165)	 0.0120	(0.0069)	
GEAR	 UKB	 1.0830	(0.0830)	 0.0172	(0.0079)	

DIAGRAM	 UKB	 0.9838	(0.0541)	 0.0198	(0.0076)	
		 	



	 11	

Supplementary	Table	2	The	accuracy	of	using	SNP	effects	estimated	from	UKB	and	DIAGRAM	to	classify	T2D	cases	and	controls	in	GERA	

Methods	 	 P-value	<	
5E-08	

P-value	<	
1E-05	 All	SNPs	

Clumping	
AUC	 0.5791	 0.5979	 /	
s.e.	 0.0029	 0.0030	 /	

SBLUP	
AUC	 0.5778	 /	 0.5999	

s.e.	 0.0029	 /	 0.0022	
Notes:	AUC	is	calculated	using	R-package	"pROC".	
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Supplementary	Table	3	Enrichment	of	the	variance	explained	by	SNPs	in	10	different	cell	type	groups	for	T2D	
Category	 Prop._SNPs	 Prop._h2	 Prop._h2s.e.	 Enrichment	 Enrichment	s.e.		 Enrichment	p-value	 Coefficient	 Coefficient	

s.e.	
Coefficient	
z-score	

Adrenal	or	pancreas	 0.094	 0.561	 0.082	 5.999	 0.877	 8.05E-09	 3.83E-08	 8.14E-09	 4.708	

CNS	 0.149	 0.395	 0.078	 2.653	 0.523	 1.23E-03	 -3.91E-09	 5.05E-09	 -0.774	

Cardiovascular	 0.111	 0.413	 0.076	 3.719	 0.683	 7.34E-05	 5.99E-09	 5.68E-09	 1.054	

Connective	or	Bone	 0.115	 0.427	 0.092	 3.711	 0.803	 5.99E-04	 6.99E-09	 8.03E-09	 0.870	

Gastrointestinal	 0.168	 0.543	 0.112	 3.236	 0.670	 8.97E-04	 4.76E-09	 6.35E-09	 0.750	

Immune	or	hematopoietic	 0.233	 0.652	 0.089	 2.792	 0.383	 4.17E-06	 1.08E-08	 4.95E-09	 2.174	

Kidney	 0.043	 0.204	 0.049	 4.797	 1.139	 8.45E-04	 1.67E-08	 9.62E-09	 1.733	

Liver	 0.072	 0.352	 0.076	 4.872	 1.051	 1.87E-04	 2.23E-08	 1.02E-08	 2.185	

Skeletal	Muscle	 0.104	 0.338	 0.077	 3.254	 0.742	 2.44E-03	 -4.14E-09	 6.50E-09	 -0.636	

Other	 0.203	 0.754	 0.146	 3.717	 0.718	 2.10E-04	 1.70E-08	 8.43E-09	 2.014	

Prop._SNPs:	proportion	of	SNPs.	Prop._h2:		proportion	of	SNP-based	h2	explained.		
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Supplementary	Table	4	Independent	rare	variants	associated	with	T2D	from	the	GWAS	analysis	in	UKB	at	BOLT_LMM	p-value	<	5E-8	

CHR	 SNP	 A1	 A2	
BOLT_LMM	in	the	whole	UKB	(n	=	455,607	

including	relatives)	
PLINK2	in	UKB	(n	=	348,580	unrelated	

individuals)	 Mapped	Genes	

A1FREQ	 OR	(95%	CI)	 P	 A1FREQ	 OR	(95%	CI)	 P	

1	 rs527320094	 C	 A	 0.00023	 2.77	(1.81-3.74)	 4.60E-09	 0.00023	 3.48	(2.21-5.49)	 8.20E-08	 LOC105378797	

2	 rs184847416	 T	 C	 0.00012	 3.54	(1.95-5.12)	 1.10E-08	 0.00012	 3.96	(2.19-7.16)	 4.97E-06	 UBBP1	

5	 rs146886108	 T	 C	 0.00714	 0.71	(0.63-0.79)	 4.40E-09	 0.00711	 0.65	(0.56-0.77)	 3.42E-07	 ANKH	

5	 rs78408340	 G	 C	 0.00960	 1.34	(1.24-1.43)	 4.40E-14	 0.00959	 1.43	(1.29-1.58)	 4.02E-12	 PAM	

7	 rs551513405	 A	 G	 0.00016	 3.05	(1.83-4.28)	 2.40E-08	 0.00016	 2.90	(1.60-5.24)	 4.45E-04	 GBAS	

9	 rs79768058_T_G	 G	 T	 0.00020	 2.87	(1.81-3.93)	 1.20E-08	 0.00019	 3.34	(2.03-5.50)	 2.09E-06	 CFAP77	

10	 rs117229942	 T	 C	 0.00818	 0.70	(0.62-0.77)	 4.00E-11	 0.00823	 0.64	(0.55-0.75)	 1.80E-08	 TCF7L2	

12	 rs576083050	 T	 C	 0.00035	 2.34	(1.62-3.05)	 3.00E-08	 0.00034	 2.32	(1.52-3.54)	 9.55E-05	 CCDC77	

14	 rs559651557	 C	 T	 0.00023	 2.67	(1.72-3.62)	 3.30E-08	 0.00023	 3.47	(2.21-5.44)	 6.59E-08	 SFTA3	

15	 rs79890196	 C	 G	 0.00026	 	2.60	(1.71-3.48)	 2.40E-08	 0.00025	 3.22	(2.05-5.05)	 3.57E-07	 NR2F2-AS1	

16	 rs551640889	 G	 C	 0.00012	 3.61	(2.01-5.21)	 5.00E-09	 0.00013	 4.15	(2.30-7.51)	 2.38E-06	 XYLT1	
	
Notes:	A1:	minor	allele;	A2:	major	allele;	A1FREQ:	allele	frequency	of	A1;	SNPs	with	BOLT_LMM	p-value	<	5E-9	are	highlighted	in	grey;	
PLINK2:	we	used	a	logistic	regression	with	sex,	age	and	first	10	PCs	fitted	as	covariates.	
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Supplementary	Table	5	Variance	explained	by	SNPs	in	different	MAF	and	LD	bins	estimated	from	the	GREML-LDMS	analysis	in	UKB		

MAF	bin	 LD	region	 Estimate	of	variance	
explained	 s.e.	

1e-4~1e-3	
low	LD	 0.0146	 0.0152	
high	LD	 0.0000	 0.0091	

1e-3~1e-2	
low	LD	 0.0215	 0.0127	
high	LD	 0.0079	 0.0073	

0.01~0.1	
low	LD	 0.0324	 0.0076	
high	LD	 0.0269	 0.0050	

0.1~0.2	
low	LD	 0.0389	 0.0055	
high	LD	 0.0216	 0.0038	

0.2~0.3	
low	LD	 0.0390	 0.0054	
high	LD	 0.0164	 0.0036	

0.3~0.4	
low	LD	 0.0312	 0.0052	
high	LD	 0.0265	 0.0038	

0.4~0.5	
low	LD	 0.0412	 0.0047	
high	LD	 0.0142	 0.0031	

The	sum	of	the	estimates	 0.3323	 0.0211	

	Notes:	The	estimates	based	on	the	liability	scale;	The	proportion	of	cases	in	the	sample	is	0.1314	and	population	disease	prevalence	is	
assumed	to	be	0.1.	
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Supplementary	Table	6	Estimates	of	the	relationship	between	MAF	and	effect	size,	proportion	of	SNPs	with	non-zero	effects	and	SNP-

based	heritability	from	the	BayesS	analysis	in	UKB	

CHR	 S	 s.e.	of	S	 Pi	 s.e.	of	Pi	 h2	 s.e.	of	h2	 CHR_length	(Mb)	 Nr_SNPs	

1	 -1.0952	 0.0347	 0.0097	 0.0026	 0.0223	 0.0022	 249.25	 110,148	
2	 0.0267	 0.2748	 0.0188	 0.0077	 0.0198	 0.0019	 243.20	 111,127	
3	 -1.0165	 0.1120	 0.0073	 0.0020	 0.0215	 0.0021	 198.02	 92,185	
4	 -0.1970	 0.6380	 0.0399	 0.0316	 0.0132	 0.0019	 191.15	 82,209	
5	 -0.1935	 0.2940	 0.0860	 0.0443	 0.0126	 0.0016	 180.92	 83,660	
6	 -1.0788	 0.0356	 0.0087	 0.0022	 0.0229	 0.0021	 171.12	 86,843	
7	 -1.0735	 0.0421	 0.0077	 0.0022	 0.0162	 0.0018	 159.14	 71,602	
8	 -0.3025	 0.3329	 0.0058	 0.0023	 0.0094	 0.0016	 146.36	 71,953	
9	 -0.6040	 0.3733	 0.0043	 0.0019	 0.0092	 0.0017	 141.21	 60,448	
10	 0.3629	 0.4892	 0.0011	 0.0004	 0.0145	 0.0014	 135.53	 70,290	
11	 -1.0445	 0.0463	 0.0094	 0.0025	 0.0177	 0.0018	 135.01	 67,512	
12	 -0.4090	 0.3325	 0.0128	 0.0057	 0.0115	 0.0015	 133.85	 65,015	
13	 -1.1734	 0.0444	 0.0094	 0.0033	 0.0100	 0.0015	 115.17	 49,298	
14	 1.2312	 0.3306	 0.1827	 0.0670	 0.0061	 0.0011	 107.35	 43,261	
15	 -1.0550	 0.0799	 0.0130	 0.0043	 0.0108	 0.0015	 102.53	 39,926	
16	 -0.0460	 0.3955	 0.0146	 0.0058	 0.0088	 0.0012	 90.35	 41,931	
17	 0.0935	 0.5217	 0.0145	 0.0062	 0.0075	 0.0012	 81.20	 35,701	
18	 -1.0728	 0.1543	 0.0118	 0.0063	 0.0065	 0.0014	 78.08	 38,863	
19	 -0.9518	 0.2204	 0.0141	 0.0054	 0.0095	 0.0014	 59.13	 24,061	
20	 -1.0833	 0.0603	 0.0079	 0.0030	 0.0079	 0.0013	 63.03	 34,101	
21	 0.6059	 0.8120	 0.0136	 0.0123	 0.0011	 0.0005	 48.13	 18,307	

22	 -0.7504	 0.2775	 0.0476	 0.0270	 0.0048	 0.0011	 51.30	 18,668	
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Supplementary	Table	7	Heritability	on	the	liability	scale	estimated	using	different	data	sets	and	methods	

Cohort	 Methods	 h2SNP	of	liability	
(s.e.)	 Case	 Control	 Total	 Prevalence	 Nr.	SNPs	

Meta-analysis	
stage	1	 LDSC	 0.207	(0.011)	 40,223	 538,305	 578,528	 0.0695	 1,031,721	

Meta-analysis	
stage	2	 LDSC	 0.196	(0.011)	 62,892	 596,424	 659,316	 0.0954	 1,006,749	

UKB	 GREML-LDMS	 0.332	(0.021)	 15,767	 104,233	 120,000	 0.1314	 18,138,214	
UKB	 BayesS	 0.319	(0.041)	 15,767	 332,813	 348,580	 0.0452	 1,317,109	
UKB	 HE-regression	 0.287	(0.011)	 15,767	 332,813	 348,580	 0.0452	 1,317,109	

UKB	 LDSC	 0.226	(0.012)	 21,147	 434,460	 455,607	 0.0464	 1,006,750	

Note:	We	assume	a	population	prevalence	of	0.1	for	T2D	to	convert	the	estimate	of	SNP-based	h2	on	the	observed	scale	to	that	on	the	
liability	scale.	
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Supplementary	Table	8	Age	heterogeneity	

SNP	 CHR	 BP	 A1	 A2	 Age	group	 A1	Freq.	 b	 s.e.	 PGWAS	 n	 Pheterogeneity	

rs72805579	 2	 62719994	 C	 A	
Born	from	1930	to	1950	 0.1218	 -0.0808	 0.0184	 1.10E-05	 237133	

2.10E-09	
Born	from	1951	to	1971	 0.1236	 0.1158	 0.0271	 2.00E-05	 218071	

Notes:	A1	Freq.	=	frequency	of	A1;	b	=	estimated	SNP	effect	with	respect	to	A1;	n	=	sample	size.	
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	Supplementary	Figure	1	Schematic	diagram	of	this	study.	
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Supplementary	Figure	2	Manhattan	plots	of	meta-analysis	with	 the	GERA	cohort	 imputed	 to	

different	 imputation	 reference	 panels.	 a)	 GERA	 was	 imputed	 to	 the	 1000	 Genomes	 Project	

(1000G).	b)	GERA	was	imputed	to	the	Haplotype	Reference	Consortium	(HRC)	using	the	Sanger	

imputation	server	(https://imputation.sanger.ac.uk/).	Shown	are	the	associations	for	~5	million	

common	variants.	
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	Supplementary	Figure	3	Forest	plots	of	the	39	novel	loci	associated	with	T2D	at	P	<	5	×10-8.	

Error	bars	represent	the	95%	confidence	intervals.	Area	of	the	square	(or	rhombus)	denotes	the	

sample	size.		 	
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	Supplementary	Figure	4	Regional	plots	of	the	39	novel	loci	identified	from	the	meta-analysis	at	

P	<	5	×	10-8.	Each	point	represents	a	SNP	passing	quality	control	in	the	meta-analysis	plotted	with	

its	P	value	(on	a	-log10	scale)	against	its	genomic	position	(NCBI	Build	37).	In	each	plot,	the	lead	

SNP	is	represented	by	the	purple	symbol.	The	color	coding	of	all	other	SNPs	indicate	LD	with	the	

lead	SNP	(estimated	by	CEU	r2	values	from	Phase	I	1000	Genomes):	red,	r2	�	0.8;	gold,	0.6	�	r2	

<	0.8;	green,	0.4	�	r2	<	0.6;	cyan,	0.2	�	r2	<	0.4;	blue,	r2	<	0.2;	grey,	r2	unknown.	Recombination	

rates	are	estimated	from	Phase	I	1000	Genomes,	and	gene	annotations	are	taken	from	the	UCSC	

genome	browser.		
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	Supplementary	Figure	5	Conditional	association	analysis	at	the	four	novel	loci	identified	by	the	

GCTA-fastBAT	analysis.	
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	Supplementary	Figure	6	Enrichment	of	the	variance	explained	by	SNPs	for	T2D	in	24	functional	

annotations.	Shown	are	the	results	 from	the	LD	score	regression	based	functional	partitioning	

analysis21.	The	24	functional	annotations	are	defined	in	Finucane	et	al.21.		Annotations	are	ordered	

by	proportion	of	SNPs.	Error	bar	represents	the	95%	confidential	interval	around	the	estimate	of	

enrichment,	 and	 the	 asterisk	 indicates	 a	 significant	 estimate	 at	 P	 <	 0.05	 after	 Bonferroni	

correction	for	24	tests.	CTCF,	CCCTC-binding	factor.	DGF,	digital	genomic	footprint.	DHS,	DNase	I	

hypersensitive	site.	TFBS,	transcription	factor	binding	site.	TSS,	transcription	start	site.	 	
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	Supplementary	Figure	7	Enrichment	of	the	variance	explained	by	SNPs	for	T2D	in	10	cell	type	

groups.	 Shown	 are	 the	 results	 from	 the	 LD	 score	 regression	 based	 functional	 partitioning	

analysis21.	 	 The	black	dashed	 lines	 at	 -log10	 (P)	=	3.6	 is	 the	 significance	 level	 after	Bonferroni	

correction.	The	grey	dashed	lines	at	-log10	(P)	=	2.3	is	the	threshold	at	FDR	<	0.05.	 	
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	Supplementary	Figure	8	Enrichment	of	the	T2D-associted	genes	in	protein-protein	interaction	

network.	There	are	123	nodes	and	210	edges	in	total	generated	by	STRING	v10.	Network	nodes	

represent	proteins.	 Small	node	 represents	protein	of	unknown	3D	 structure	while	 large	node	

represents	 that	 the	 3D	 structure	 is	 known	 or	 predicted.	 Edges	 represent	 protein-protein	

associations.	Dark	purple	edge	represents	experimentally	determined	 interaction,	 light	purple	

edge	represents	protein	homology,	and	yellow	edge	represents	interaction	from	text-mining.		
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	Supplementary	 Figure	 9	 Enrichment	 of	 the	 235	 T2D-associated	 DNAm	 sites	 in	 functional	

categories.		a)	Distribution	of	the	T2D-associated	DNAm	probes	(“Sig.	DNAm”,	blue)	across	the	14	

functional	categories	in	comparison	with	that	of	all	DNAm	probes	in	the	data	(“All	DNAm”,	green).	

b)	Fold	enrichment:	a	comparison	of	the	T2D-associated	probes	with	the	same	number	of	probes	

sampled	repeatedly	at	random	with	the	variance	of	each	probe	matched.	Error	bar	represents	the	

standard	error	of	an	estimate	obtained	from	500	random	samples.	The	14	functional	annotation	

categories	are:	TssA,	active	transcription	start	site;	Prom,	upstream/downstream	TSS	promoter;	

Tx,	 actively	 transcribed	 state;	 TxWk,	 weak	 transcription;	 TxEn,	 transcribed	 and	 regulatory	

Prom/Enh;	 EnhA,	 active	 enhancer;	 EnhW,	weak	 enhancer;	 DNase,	 primary	 DNase;	 ZNF/Rpts,	

state	associated	with	zinc	finger	protein	genes;	Het,	constitutive	heterochromatin;	PromP,	Poised	

promoter;	PromBiv,	bivalent	regulatory	states;	ReprPC,	repressed	Polycomb	states;	and	Quies,	a	

quiescent	state.	
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Supplementary	Figure	10	The	power	of	the	SMR	test	with	varied	sample	size	of	eQTL	study.	

The	simulation	method	is	described	in	the	Supplementary	Note	9.	The	sample	size	of	the	

simulated	disease	trait	was	659,316	(with	a	prevalence	of	10%).	Here,	we	investigated	the	SMR	

replication	power	at	P	<	1.9	×10'(	(0.05/27,	the	number	genes	identified	by	SMR	and	HEIDI	
using	the	eQTLGen	data)	and	the	SMR	discovery	power	at	P	<	4.3	×10'+	(0.05/11,743,	the	
number	of	probes	in	the	eQTLGen	data).	The	simulation	result	showed	that	SMR	power	was	

high	even	with	small	sample	size	eQTL	data	(e.g.	GTEx	data),	but	its	discovery	power	was	

restricted	by	the	power	of	eQTL	detection.	When	,-./0 = 400,	i.e.,	the	upper	limit	of	,-./0	in	
the	GTEx-AALP	data,	the	discovery	power	at	2345 <	4.3	×10-6	was	closet	to	90%	and	the	gene	
discoveries	would	only	depend	on	the	eQTL	power	(43%).	Note	that	the	replication	power	

(2345 < 1.9	×10'()	was	much	larger	than	the	discovery	power	(2345 < 4.3	×10'+)	even	if	
,-./0	was	relatively	small.	
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Supplementary	Figure	11	Association	signals	of	the	expression	level	of	CWF19L1	with	the	cis-

SNPs	in	eQTLGen	and	CAGE	in	comparison	with	those	in	five	GTEx	tissues.	Shown	are	the	

results	from	the	SMR	analysis	that	integrates	data	from	GWAS,	eQTL	and	mQTL	studies.	The	top	

plot	shows	-log10(P-value)	from	our	GWAS	meta-analysis.	Red	diamonds	and	blue	circles	

represent	-log10(P-value)	from	the	SMR	tests	for	associations	of	gene	expression	and	DNA	

methylation	probes	with	T2D,	respectively.	Solid	diamonds	and	circles	represent	the	probes	not	

rejected	by	the	HEIDI	test.	The	second	plot	shows	-log10(P-value)	of	SNP	associations	with	gene	

expression	probes	(tagging	CWF19L1)	in	eQTLGen,	CAGE	and	five	GTEx	tissues.	The	third	plot	

shows	-log10(P-value)	of	SNP	associations	with	a	DNA	methylation	probe	cg20925178.	
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Supplementary	Figure	12	Estimates	of	SMR	effects	in	eQTLGen	vs.	those	in	the	five	GTEx	

tissues.	The	SMR	effect	(bSMR)	is	defined	as	the	effect	of	the	expression	level	of	a	gene	on	T2D	

risk28.	Shown	are	the	18	genes	detected	using	the	eQTLGen	data	with	bSMR	estimated	in	eQTLGen	

plotted	against	those	estimated	in	the	GTEx	tissues	(including	pancreas,	liver	and/or	adiposes).	

The	MHC	region	was	not	included	in	the	analysis.	Each	dot	represents	a	gene	with	colors	

indicating	different	tissues	in	GTEx.	Error	bar	represents	the	standard	error	for	an	estimate	of	

bSMR.	The	correlation	of	bSMR	estimates	between	eQTLGen	and	GTEx	is	0.80.		
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Supplementary	Figure	13	Comparison	of	the	p-values	from	the	SMR	analysis	with	the	

posterior	probabilities	(PP)	from	the	COLOC	analysis.	PP3	represents	the	posterior	probability	

of	the	hypothesis	that	there	are	two	SNPs	(likely	in	LD)	associated	with	gene	expression	and	

T2D,	respectively.	PP4	represents	the	posterior	probability	of	the	hypothesis	that	there	is	one	

shared	SNP	associated	with	gene	expression	and	T2D.	The	result	showed	that	most	genes	that	

passed	the	genome-wide	significant	threshold	in	the	SMR	test	also	had	extremely	high	PP	of	

associations	with	T2D	from	the	COLOC	analysis,	suggesting	a	good	concordance	between	the	

two	methods.	 	
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Supplementary	 Figure	14a	 Prioritizing	 genes	 and	 regulatory	 elements	 at	 the	ATP5G1	 locus.	

Shown	are	the	results	from	the	SMR	analysis	that	integrates	data	from	GWAS,	eQTL	and	mQTL	

studies.	The	top	plot	shows	-log10(P-value)	of	SNPs	from	the	GWAS	meta-analysis	for	T2D.	Red	

diamonds	and	blue	circles	represent	-log10(P-value)	from	the	SMR	tests	for	associations	of	gene	

expression	and	DNAm	probes	with	T2D,	respectively.	Solid	diamonds	and	circles	represent	the	

probes	 not	 rejected	 by	 the	 HEIDI	 test.	 The	 second	 plot	 shows	 -log10(P-value)	 of	 the	 SNP	

association	for	gene	expression	probe	42278	(tagging	ATP5G1).	The	third	plot	shows	-log10(P-

value)	 of	 the	 SNP	 association	 with	 DNAm	 probe	 cg16584676.	 The	 bottom	 plot	 shows	 25	

chromatin	state	annotations	(indicated	by	colours)	of	127	samples	from	Roadmap	Epigenomics	

Mapping	Consortium	(REMC)	for	different	primary	cells	and	tissue	types	(rows).		 	
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	Supplementary	 Figure	 14b	 Hypothesized	 mechanism	 of	 how	 DNA	 methylation	 affect	 the	

expression	level	of	ATP5G1.	When	the	methylation	level	of	the	promoter	region	is	low,	the	RNA	

polymerase	II	binds	to	the	promoter	region	with	the	assistance	from	transcription	factors	(TF),	

and	 initiate	 the	 transcription.	However,	 if	 the	promoter	 region	 is	 highly	methylated,	 it	would	

obstruct	the	binding	of	RNA	polymerase	II	to	promoter	region,	which	leads	to	the	reduction	of	

transcription.	
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Supplementary	Figure	15	Heterogeneity	in	SNP	effect	between	sex	(or	age)	groups	in	UKB.	

Shown	are	the	Manhattan	plots	from	the	heterogeneity	tests	between	sex	(or	age)	groups	for	all	

18,138,214	variants	(including	the	rare	variants)	(Supplementary	Note	11).	The	x-axis	is	the	

chromosome	number	and	the	y-axis	is	the	–log10	of	heterogeneity	P-value.	The	blue	lines	

represent	a	genome-wide	significance	level	at	P	<	5×10-8,	and	the	red	lines	represent	a	

threshold	of	5×10-9	(as	suggested	by	Wu	et	al.41	for	GWAS	with	both	common	and	rare	variants	

from	imputation).	SNPs	with	Pheter	>	0.01	are	omitted.	
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Supplementary	 Figure	 16	 Test-statistics	 at	 the	 139	 T2D	 loci	 conditioning	 on	 BMI	 or	

Dyslipidaemia	by	a	GCTA-mtCOJO	analysis	vs.	those	from	the	original	meta-analysis.	Each	circle	

represents	a	 locus.	 	Shown	on	the	x-axis	are	 the	chi-squared	statistics	 from	the	original	meta-

analysis	and	those	on	the	y-axis	are	the	chi-square	statistics	from	the	mtCOJO	analysis.	The	size	

of	 a	 circle	 reflects	 the	 difference	 in	 chi-square	 statistic	 between	 meta-analysis	 and	 mtCOJO	

analysis.	The	 loci	with	relatively	 large	differences	are	 labelled	with	the	names	of	their	nearest	

genes.	
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Supplementary	Figure	17	Prioritizing	genes	and	regulatory	elements	at	the	ARG1	locus.	Shown	

are	the	results	from	the	SMR	analysis	that	integrates	data	from	GWA	and	eQTL	studies.	The	top	

plot	 shows	 -log10(P-value)	 of	 SNPs	 from	 the	 GWAS	 meta-analysis	 for	 T2D.	 Red	 diamonds	

represent	-log10(P-value)	from	the	SMR	tests	for	associations	of	gene	expression	probes	with	T2D.	

Solid	diamonds	 represent	 the	probes	not	 rejected	by	 the	HEIDI	 test.	The	 second	plot	 shows	 -

log10(P-value)	of	the	SNP	association	for	gene	expression	probe	56635	(tagging	ARG1)	and	39166	

(tagging	MED23).	The	bottom	plot	shows	25	chromatin	state	annotations	(indicated	by	colours)	

of	127	samples	from	Roadmap	Epigenomics	Mapping	Consortium	(REMC)	for	different	primary	

cells	and	tissue	types	(rows).	
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